# PanLex: Using PostgreSQL to implement a massive wordtranslation graph

David Kamholz PanLex project, The Long Now Foundation kamholz@panlex.org





### PanLex overview

- Non-profit project of The Long Now Foundation
- Mission: overcome language barriers to human rights, information, and opportunities
  - focus on small, under-served language communities
- Main product: database connecting every word in every language
  - 2,500 dictionaries
  - 5,700 languages (of about 7,000 in the world)
  - 25 million expressions (~words)
  - 1.3 billion direct pairwise translations
  - freely available



# Presentation topics

- Database goals
- Database schema
- Word-translation query examples

   direct (attested) translations
   indirect (inferred) translations
   translation quality algorithms
- Strategies we've used to optimize performance



# Database design goals

- Given a word in *any* language, get back translations in *any* other language
- Don't make data model so rich or restrictive that it can't support the limited data available for many smaller languages

• require only words in usual written form

optional: part of speech, semantics, irregular forms, pronunciation, etc.
 make it possible to ingest widely available data (e.g. Wiktionary)

• Make it possible to infer new translations not directly attested in any source



# Database coverage: top 20 language varieties

| language               | num. expressions | language               | num. expressions |
|------------------------|------------------|------------------------|------------------|
| English                | 2,966,334        | Uyghur (Arabic script) | 396,771          |
| Mandarin (Simplified)  | 1,661,698        | Uyghur (Latin script)  | 350,252          |
| Russian                | 1,203,275        | Czech                  | 338,493          |
| French                 | 691,415          | Finnish                | 332,508          |
| German                 | 686,887          | Portuguese             | 298,375          |
| Mandarin (Pinyin)      | 637,854          | Polish                 | 287,792          |
| Japanese               | 592,244          | Dutch                  | 284,054          |
| Spanish                | 561,276          | Arabic                 | 278,293          |
| Italian                | 488,153          | Esperanto              | 265,415          |
| Mandarin (Traditional) | 469,780          | Hindi                  | 264,541          |



# PanLex database concepts 1

- *language*: the set of linguistic varieties designated by a single ISO 639 three-letter code (eng = English, cmn = Mandarin, etc.)
- *language variety*: particular variety of a language (distinguished by dialect, script, etc.)
- expression: string of characters in a language variety, representing a word or word-like phrase ("try", "try out", "trial and error")
- *resource*: anything that documents equivalences among expressions (dictionary, thesaurus, thematic word list, database, etc.)
- *source*: logical chunk of a resource, as represented in PanLex (if not whole resource, could be each direction of a bilingual dictionary)



# PanLex database concepts 2

- *meaning*: single set of inter-translated expressions from a source (always belongs to **one** source!)
- *denotation*: pairing of an expression with a meaning in a source
- translation: two expressions that are (arguably) equivalent

   direct: explicitly attested in some PanLex source
   indirect: inferred by combining multiple PanLex sources
- translation examples
  - English "couch" = English "sofa"
  - English "cat" = Spanish "gato" = German "Katze" (3 pairwise translations)



#### Database schema illustration





#### Source table definition

CREATE TABLE source (

id serial PRIMARY KEY,

label text NOT NULL UNIQUE,

-- standardized human-readable label e.g. 'eng-spa-Smith' quality smallint NOT NULL,

-- ranges from 0 to 9

grp integer NOT NULL REFERENCES source(id)

-- groups sources together from the same resource





### Expression table definition

```
CREATE TABLE expr (
    id serial PRIMARY KEY,
    langvar integer NOT NULL REFERENCES langvar(id),
    txt text NOT NULL,
    UNIQUE (txt, langvar)
);
```



#### Meaning and denotation table definitions

CREATE TABLE meaning ( -- translation set from a source id serial PRIMARY KEY, source integer NOT NULL REFERENCES source(id) );

```
CREATE TABLE denotation ( -- links expression and meaning
    id serial PRIMARY KEY,
    meaning integer NOT NULL REFERENCES meaning(id),
    expr integer NOT NULL REFERENCES expr(id),
    UNIQUE (meaning, expr)
```

);



#### Denotationx table definition (denormalized)

CREATE TABLE denotationx ( -- denormalized denotation id integer NOT NULL REFERENCES denotation(id), meaning integer NOT NULL, -- denotation.meaning expr integer NOT NULL, -- denotation.expr **langvar** smallint NOT NULL, -- denotation.expr.langvar **source** smallint NOT NULL, -- denotation.meaning.source **grp** smallint NOT NULL, -- denotation.meaning.source.grp quality smallint NOT NULL, -- denotation.meaning.source.quality UNIQUE (meaning, expr)



);

# Schema design decisions

- Meaning-denotation-expression design creates some level of indirection, but allows translation sets to be arbitrarily large
  - translation set with 500 expressions has 124,750 undirected pairs
  - gets costly to derive and store each pair
- PanLex concept of meaning is aspirational, not literal (confusingly)
  - two sources documenting an equivalence between English "cat" and Spanish "gato" will create two different PanLex meanings, despite having the same linguistic meaning
  - because can't always be sure which PanLex meanings have the same linguistic meaning: which did dictionary author intend? think of words like "bank" (financial institution vs. edge of river), "play" (verb vs. noun meaning theater piece)
  - aspiration to eventually merge PanLex meanings that share the same linguistic meaning (not easy!)



### How would you write a translation query?





```
Direct translation query
English "eggplant" \rightarrow Spanish
SELECT DISTINCT expr.id, expr.txt
FROM expr
JOIN denotationx AS d ON d.expr = expr.id
JOIN denotationx AS d src ON d src.meaning = d.meaning AND
  d src.expr != d.expr
WHERE expr.langvar = 666 AND d src.expr IN (SELECT expr.id FROM
  expr WHERE expr.langvar = 187 AND expr.txt = 'eggplant');
```

• NB: langvar 666 = Spanish, 187 = English



#### Direct translation query English "eggplant" → Spanish

| id       | txt               |
|----------|-------------------|
| 654994   | berenjena         |
| 8368676  | aubergine         |
| 8374926  | manzana de amor   |
| 20909249 | solanum melongena |
| 23225336 | color berenjena   |

• Results are good, but unordered and don't know which is "better"



# Direct translation query with quality English "eggplant" → Spanish

```
JOIN denotationx AS d ON d.expr = expr.id
```

```
JOIN denotationx AS d_src ON d_src.meaning = d.meaning AND
```

```
d_src.expr != d.expr
```

```
WHERE expr.langvar = 666 AND d_src.expr IN (SELECT expr.id FROM
expr WHERE expr.langvar = 187 AND expr.txt = 'eggplant')
```

GROUP BY expr.id

ORDER BY trans\_quality DESC;



# Implementation of grp\_quality\_score

```
CREATE FUNCTION grp_quality_score(grp integer[], quality
  smallint[]) RETURNS integer LANGUAGE sql IMMUTABLE AS $$
SELECT sum(max quality)::integer
FROM (
  SELECT max(quality) AS max_quality FROM (
      SELECT * FROM unnest(grp, quality) AS u(grp, quality)
    ) a
    GROUP BY grp
  ) b
```

\$\$;



# Direct translation query with quality: result English "eggplant" → Spanish

| id       | txt               | trans_quality |
|----------|-------------------|---------------|
| 654994   | berenjena         | 65            |
| 23225336 | color berenjena   | 7             |
| 20909249 | solanum melongena | 3             |
| 8368676  | aubergine         | 2             |
| 8374926  | manzana de amor   | 2             |



# What about a less typical pair of languages?



• Probably don't have an Irish Gaelic–Moor dictionary...



```
Indirect translation query
Irish Gaelic "madra" (dog) \rightarrow Moor
```

```
SELECT expr.id, expr.txt, grp_quality_expr_score_geo2(array_agg(d.grp),
    array_agg(d_src.grp), array_agg(d.quality), array_agg(d_src.quality),
    array_agg(d2.expr)) AS trans_quality
```

FROM expr

```
JOIN denotationx AS d ON d.expr = expr.id
```

```
JOIN denotationx AS d2 ON d2.meaning = d.meaning AND d2.expr != d.expr
JOIN denotationx AS d3 ON d3.expr = d2.expr
```

JOIN denotationx AS d\_src ON d\_src.meaning = d3.meaning AND d\_src.grp

```
!= d.grp AND d_src.expr != d.expr AND d_src.expr != d3.expr
WHERE expr.langvar = 886 AND d_src.expr IN (SELECT expr.id FROM expr
WHERE expr.langvar = 238 AND expr.txt = 'madra')
```

GROUP BY expr.id

ORDER BY trans\_quality DESC;



#### Implementation of grp\_quality\_expr\_score\_geo2

```
CREATE FUNCTION grp_quality_expr_score_geo2(grp1 integer[], grp2
integer[], quality1 smallint[], quality2 smallint[], expr2 integer[])
RETURNS integer LANGUAGE sql IMMUTABLE AS $$
SELECT round(sum(sqrt(b.quality1*b.quality2)))::integer
FROM (
```

```
SELECT max(a.quality1) AS quality1, max(a.quality2) AS quality2
FROM (
   SELECT * FROM unnest(grp1, grp2, quality1, quality2, expr2) AS
```

```
u(grp1, grp2, quality1, quality2, expr2)
```

) a

```
GROUP BY a.grp1, a.grp2, a.expr2
```

) b



#### Indirect translation query: result Irish Gaelic "madra" (dog) $\rightarrow$ Moor

| id       | txt    | trans_quality |
|----------|--------|---------------|
| 7409488  | auna   | 2692          |
| 7409578  | sava?u | 6             |
| 18744101 | ma7a   | 5             |



#### Indirect translation: top intermediate languages Irish Gaelic "madra" (dog) $\rightarrow$ Moor

| langvar          | times used | langvar         | times used |
|------------------|------------|-----------------|------------|
| English          | 44         | hrvatski        | 15         |
| Esperanto        | 34         | Malti           | 14         |
| Tagalog          | 19         | hornjoserbšćina | 12         |
| bokmål           | 17         | lloko           | 12         |
| català           | 17         | føroyskt        | 12         |
| eesti            | 17         | bosanski        | 11         |
| latviešu         | 17         | Volapük         | 10         |
| brezhoneg        | 16         | basa Jawa       | 9          |
| bahasa Indonesia | 16         | Bahasa Malaysia | 9          |
| slovenčina       | 15         | isiZulu         | 9          |



### Performance observations

- Denormalized denotationx table is a big win overall

   reduces number of joins (especially in indirect translation queries)
   uses less memory
  - produces better query plans
- Translation queries benefit from having working set (expr and denotationx tables and indexes) loaded into memory
  - $\circ\,$  single dedicated server with 128GB of RAM hosts PanLex database
  - extra memory at lower price point (no cloud) is worth the loss of flexibility/scalability
  - (keep in mind: PanLex is a small project with limited staff)



# By the way, you can do more than just translation with PanLex...

- Generate fake words in a language using a Markov-chain model
- English examples:
  - hired mullet
  - adjustache
  - nuclear souffle
  - predestructural struction
  - garbling port
  - telephantability
  - pepperonism
  - vermicrosoft driverian

